Evidence for the Existence of Secretory Granule (Dense-Core Vesicle)-Based Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Signaling System in Astrocytes
نویسندگان
چکیده
BACKGROUND The gliotransmitters released from astrocytes are deemed to play key roles in the glial cell-neuron communication for normal function of the brain. The gliotransmitters, such as glutamate, ATP, D-serine, neuropeptide Y, are stored in vesicles of astrocytes and secreted following the inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ releases. Yet studies on the identity of the IP3-dependent intracellular Ca2+ stores remain virtually unexplored. PRINCIPAL FINDINGS We have therefore studied the potential existence of the IP3-sensitive intracellular Ca2+ stores in the cytoplasm of astrocytes using human brain tissue samples in contrast to cultured astrocytes that had primarily been used in the past. It was thus found that secretory granule marker proteins chromogranins and secretogranin II localize in the large dense core vesicles of astrocytes, thereby confirming the large dense core vesicles as bona fide secretory granules. Moreover, consistent with the major IP3-dependent intracellular Ca2+ store role of secretory granules in secretory cells, secretory granules of astrocytes also contained all three (types 1, 2, and 3) IP3R isoforms. SIGNIFICANCE Given that the secretory granule marker proteins chromogranins and secretogranin II are high-capacity, low-affinity Ca2+ storage proteins and chromogranins interact with the IP3Rs to activate the IP3R/Ca2+ channels, i.e., increase both the mean open time and the open probability of the channels, these results imply that secretory granules of astrocytes function as the IP3-sensitive intracellular Ca2+ store.
منابع مشابه
pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody.
Chromogranin A is a high capacity, low affinity Ca(2+)-binding protein suggested to be responsible for the Ca2+ storage function of the secretory vesicle, which has been identified as a major inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ store of adrenal medullary chromaffin cells. Moreover, chromogranin A has recently been shown to interact with the vesicle membrane at the in...
متن کاملCalcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to ...
متن کاملCa2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin.
The nature of second messenger-responsive intracellular Ca2+ stores in neurons remains open for discussion. Here, we demonstrate the existence in Purkinje cells (PCs) of endoplastic reticulum (ER) subcompartments characterized by an uneven distribution of three proteins involved in Ca2+ storage and release: the inositol 1,4,5-trisphosphate (InsP3) receptor, Ca(2+)-ATPase, and calsequestrin. Ca(...
متن کاملEvidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells.
A key event leading to exocytosis of pancreatic acinar cell zymogen granules is the inositol 1,4,5-trisphosphate (InsP3)-mediated release of Ca2+ from intracellular stores. Studies using digital imaging microscopy and laser-scanning confocal microscopy have indicated that the initial release of Ca2+ is localized to the apical region of the acinar cell, an area of the cell dominated by secretory...
متن کاملInositol Trisphosphate and Cyclic ADP-Ribose–Mediated Release of Ca2+ from Single Isolated Pancreatic Zymogen Granules
In pancreatic acinar cells low (physiological) agonist concentrations evoke cytosolic Ca2+ spikes specifically in the apical secretory pole that contains a high density of secretory (zymogen) granules (ZGs). Inositol 1,4,5-trisphosphate (IP3) is believed to release Ca2+ from the endoplasmic reticulum, but we have now tested whether the Ca(2+)-releasing messengers IP3 and cyclic ADP-ribose (cADP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010